Среднее случайной величины

Понятие случайной величины

Случайной называется величина, которая в результате испытаний принимает то или иное (но при этом только одно) возможное значение, заранее неизвестное, меняющееся от испытания к испытанию и зависящее от случайных обстоятельств. В отличие от случайного события, являющегося качественной характеристикой случайного результата испытания, случайная величина характеризует результат испытания количественно.

Дискретной называется случайная величина, принимающая конечное или бесконечное счетное множество значений. Например: частота попаданий при трех выстрелах; число бракованных изделий в партии из штук; число вызовов, поступающих на телефонную станцию в течение суток; число отказов элементов прибора за определенный промежуток времени при испытании его на надежность; число выстрелов до первого попадания в цель и т. д.

Непрерывной называется случайная величина, которая может принимать любые значения из некоторого конечного или бесконечного интервала. Очевидно, что число возможных значений непрерывной случайной величины бесконечно. Например: ошибка при измерении дальности радиолокатора; время безотказной работы микросхемы; погрешность изготовления деталей; концентрация соли в морской воде и т. д.

Случайные величины обычно обозначают буквами и т. д., а их возможные значения — и т. д. Для задания случайной величины недостаточно перечислить все ее возможные значения. Необходимо также знать, как часто могут появиться те или иные ее значения в результате испытаний при одних и тех же условиях, т. е.

Законы распределения случайной величины

Законом распределения случайной величины называется соответствие между возможными значениями случайной величины и соответствующими им вероятностями. Про случайную величину говорят, что она подчиняется данному закону распределения. Две случайные величины называются независимыми, если закон распределения одной из них не зависит то того, какие возможные значения приняла другая величина.

Закон распределения случайной величины может быть задан в виде таблицы, функции распределения либо плотности распределения. Таблица, содержащая возможные значения случайной величины и соответствующие вероятности, является простейшей формой задания закона распределения случайной величины.

Табличное задание закона распределения можно использовать только для дискретной случайной величины с конечным числом возможных значений. Табличная форма задания закона случайной величины называется также рядом распределения.

Для наглядности ряд распределения представляют графически. При графическом изображении в прямоугольной системе координат по оси абсцисс откладывают все возможные значения случайной величины, а по оси ординат — соответствующие вероятности. Точки , соединенные прямолинейными отрезками, называют многоугольником распределения (рис. 5).

Многоугольник распределения, как и ряд распределения, является одной из форм задания закона распределения дискретной случайной величины. Они могут иметь различную форму, однако все обладают одним общим свойством: сумма ординат вершин многоугольника распределения, представляющая собой сумму вероятностей всех возможных значений случайной величины, всегда равна единице.

Плотность распределения вероятности и ее свойства

Функция распределения является наиболее общей формой задания закона распределения. Она используется для задания как дискретных, так и непрерывных случайных величин. Обычно ее обозначают . Функция распределения определяет вероятность того, что случайная величина принимает значения, меньшие фиксированного действительного числа , т. е. . Функция распределения полностью характеризует случайную величину с вероятностной точки зрения. Ее еще называют интегральной функцией распределения.

Геометрическая интерпретация функции распределения очень проста. Если случайную величину рассматривать как случайную точку оси (рис. 6), которая в результате испытания может занять то или иное положение на оси, то функция распределения — это вероятность того, что случайная точка в результате испытания попадет левее точки .

Для дискретной случайной величины , которая может принимать значения , функция распределения имеет вид

где неравенство означает, что суммирование распространяется на все значения , меньше . Из этой формулы следует, что функция распределения дискретной случайной величины представляет собой ступенчатую ломаную линию (рис. 7). При каждом новом значении случайной величины ступень поднимается выше на величину, равную вероятности этого значения. Сумма всех скачков функции распределения равна единице.

Непрерывная случайная величина имеет непрерывную функцию распределения, график этой функции имеет форму плавной кривой (рис. 8 ).

Рассмотрим общие свойства функций распределения.

Справедливость этого свойства вытекает из того, что функция распределения определена как вероятность случайного события, состоящего в том, что .

Свойство 2. Вероятность попадания случайной величины в интервал равна разности значений функции распределения на концах этого интервала, т. е.

Отсюда следует, что вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Свойство 3. Функция распределения случайной величины есть неубывающая функция, т. е. .

Свойство 4. На минус бесконечности функция распределения равна нулю, а на плюс бесконечности — единице, т. е. и .

Пример 1. Функция распределения непрерывной случайной величины задана выражением

Найти коэффициент и построить график . Определить вероятность того, что случайная величина в результате опыта примет значение на интервале .

Решение. Так как функция распределения непрерывной случайной величины непрерывна, то при получим . Отсюда . График функции изображен на рис. 9.

Исходя из второго свойства функции распределения, имеем

Функция распределения непрерывной случайной величины является ее вероятностной характеристикой. Но она имеет недостаток, заключающийся в том, что по ней трудно судить о характере распределения случайной величины в небольшой окрестности той или другой точки числовой оси. Более наглядное представление о характере распределения непрерывной случайной величины дает функция, которая называется плотностью распределения вероятности, или дифференциальной функцией распределения случайной величины.

Плотность распределения равна производной от функции распределения , т. е.

Смысл плотности распределения состоит в том, что она указывает на то, как часто случайная величина появляется в некоторой окрестности точки при повторении опытов. Кривая, изображающая плотность распределения случайной величины, называется кривой распределения.

Рассмотрим свойства плотности распределения.

Свойство 1. Плотность распределения неотрицательна, т. е.

Свойство 2. Функция распределения случайной величины равна интегралу от плотности в интервале от до , т. е.

Свойство 3. Вероятность попадания непрерывной случайной величины на участок равна интегралу от плотности распределения, взятому по этому участку, т. е.

Пример 2. Случайная величина подчинена закону распределения с плотностью

Определить коэффициент а; построить график плотности распределения; найти вероятность попадания случайной величины на участок от до определить функцию распределения и построить ее график.

Решение. Площадь, ограниченная кривой распределения, численно равна

График плотности распределения на рис. 10. По свойству 3, имеем

Таким образом, имеем

График функции распределения изображен на рис. 11

Числовые характеристики среднего арифметического n независимых случайных величин

Закон распределения полностью характеризует случайную величину с вероятностной точки зрения. Но при решении ряда практических задач нет необходимости знать все возможные значения случайной величины и соответствующие им вероятности, а удобнее пользоваться некоторыми количественными показателями. Такие показатели называются числовыми характеристиками случайной величины. Основными из них являются математическое ожидание, дисперсия, моменты различных порядков, мода и медиана.

Учитывая, что получаем

Итак, математическим ожиданием дискретной случайной величины называется сумма произведений всех ее возможных значений на соответствующие вероятности.

Для непрерывной случайной величины математическое ожидание

Среднее случайной величины

Математическое ожидание непрерывной случайной величины, возможные значения которой принадлежат отрезку ,

Средняя арифметическая этих случайных величин

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Свойства математического ожидания

Пример 3. Найти математическое ожидание количества бракованных изделий в выборке из пяти изделий, если случайная величина (количество бракованных изделий) задана рядом распределения.

Решение. По формуле (4.1) находим

Модой дискретной случайной величины называется наиболее вероятное ее значение.

Модой непрерывной случайной величины называется такое ее значение, которому соответствует наибольшее значение плотности распределения. Геометрически моду интерпретируют как абсциссу точки глобального максимума кривой распределения (рис. 12).

Медианой случайной величины называется такое ее значение, для которого справедливо равенство

С геометрической точки зрения медиана — это абсцисса точки, в которой площадь фигуры, ограниченной кривой распределения вероятностей и осью абсцисс, делится пополам (рис. 12). Так как вся площадь, ограниченная кривой распределения и осью абсцисс, равна единице, то функция распределения в точке, соответствующей медиане, равна 0,5, т. е.

Для непрерывной случайной величины, закон распределения которой задан плотностью распределения вероятности , дисперсия

Размерность дисперсии равна квадрату размерности случайной величины и поэтому ее нельзя интерпретировать геометрически. Этих недостатков лишено среднее квадратическое отклонение случайной величины, которое вычисляется по формуле

Свойства дисперсии случайных величин

Свойство 5. Дисперсия произведения двух независимых случайных величин и определяется по формуле

Пример 4. Вычислить дисперсию количества бракованных изделий для распределения примера 3.

Решение. По определению дисперсии

Обобщением основных числовых характеристик случайной величины является понятие моментов случайной величины.

Начальный момент дискретной случайной величины

начальный момент непрерывной случайной величины

Центральный момент дискретной случайной величины

центральный момент непрерывной случайной величины

Начальный момент первого порядка представляет собой математическое ожидание, а центральный момент второго порядка — дисперсию случайной величины.

Пример 5. Случайная величина задана плотностью распределения вероятностей

Найти коэффициент , математическое ожидание, дисперсию, асимметрию и эксцесс.

Таким образом,

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть
Adblock detector