Процент это в экономике определение

Процент как единица измерения

Этот термин имеет латинское происхождение: “per cent” можно перевести как “на сотню”. По сути, это одна сотая часть чего-то. В математике и информатике имеет свое обозначение – “%”. То есть 10 килограмм от одной тонны (что составляет, как известно, 1000 кг) – это будет как раз 1 %. В школах понятие процента очень часто объясняют на примере пирога. Так, целый пирог – это единица (или 100 %). Если мы отрежем от него половину – то это будет 50 %, если четверть – то 25 % и так далее.

Правила набора

О процентах знали (и активно их применяли в качестве своеобразной системы исчисления) еще в древнеримском государстве. Тогда использовались дроби в качестве определения размера налога на товары (его величина составляла одну сотую).

Как свидетельствуют многочисленные источники, такая дробная система активно использовалась и позже, уже в Средние Века. С её помощью вычисляли размер процентных ставок, а также величину доходов и убытков. Начиная с 17 века эта система стала общестандартной для подобных исчислений. На территории нашей страны процентная система прижилась во времена великого реформатора Петра Первого.

Как же возник этот математический знак, который обозначает “проценты” и известен сегодня во всем мире? Оказывается, история его происхождения очень любопытна, а возник он вследствие простой опечатки! Так, французский математик в 1685 году издает труд под названием “Руководство по коммерческой арифметике”.

При этом для обозначения процента он пользовался сокращением “cto”. Когда же он отдал свою рукопись в печать, то человек, набиравший его текст, воспринял это сокращение как дробь и в книге напечатал его именно так: ” 0 / 0 “. Вот так и родился этот знак – в результате банальной опечатки наборщика! И очень быстро он стал популярным и узнаваемым по всей планете.

Этот знак используется исключительно вместе с цифрой. До 1982 года ГОСТом было принято не разрывать знак “%” и числовое значение, идущее перед ним. Однако потом правила набора изменились, теперь между числом и знаком процента нужно ставить так называемый неразрывный пробел. Это пробел, который не разрывает два соседних символа на разные строки документа.

В Древнем Риме, задолго до существования десятичной системы счисления, вычисления часто производились с помощью дробей, которые были кратны 1/100. Например, Октавиан Август взимал налог в размере 1/100 на товары, реализовавшиеся на аукционе, это было известно как лат. centesima rerum venalium
(сотая доля продаваемых вещей). Подобные расчёты были похожи на вычисление процентов.

При деноминации валюты в средние века вычисления со знаменателем 100 стали более привычными, а с конца XV века до начала XVI века данный метод расчёта стал повсеместно использоваться, судя по содержанию изученных материалов, содержащих арифметические вычисления. Во многих из этих материалов данный метод применялся для расчёта прибыли и убытка, процентных ставок, а также в правиле трёх
[неизвестный термин
] . В XVII веке данная форма вычислений стала стандартом для представления процентных ставок в сотых долях .

В России понятие процента впервые ввёл Пётр I . Но считается, что подобные вычисления начали применяться в Смутное время , как результат первой в мировой истории привязки чеканных монет 1 к 100, когда рубль сначала состоял из 10 гривенников, а позже из 100 копеек [] .

Это правило набора введено в действие в 1982 году нормативным документом ГОСТ 8.417-81 (впоследствии заменённым на ГОСТ 8.417-2002); ранее нормой было не отделять знак процента пробелом от предшествующей цифры.
В настоящее время правило отбивки знака процента не является общепризнанным. До сих пор многие российские издательства не следуют рекомендациям ГОСТ 8.417-2002 и по-прежнему придерживаются традиционных правил набора, то есть при наборе знак процента от предшествующего числа не отделяется.

Правило нахождения процентного выражения числа от другого

Третьим базовым типом математических задач на процентные вычисления являются такие задания, в которых необходимо использовать правило нахождения процентного выражения числа от другого (или соотношения двух величин). Оно гласит о том, что для решения необходимо второе число разделить на первое, после чего полученный результат умножить на сто.

Изменения показателей, которые сами исчисляется в процентах, обычно выражают не в процентах от исходного показателя, а в так называемых «процентных пунктах», выражающих разность нового и старого значений показателя . Например, если в некой стране индекс деловой активности вырос с 50 % до 51 %, то он изменился на
51
%

50
%
50
%
=
1
50
=
0
,
02
=
2
%
{displaystyle {frac {51~%-50~%}{50~%}}={frac {1}{50}}=0{,}02=2~%}
, а в процентных пунктах изменение составило
51
%

50
%
=
1
%
{displaystyle 51~%-50~%=1~%}
.

Сравнение величин в процентах

Иногда бывает удобным сравнивать две величины не по разности их значений, а в процентах. Например, цену двух товаров сравнивать не в рублях, а оценивать, насколько цена одного товара больше или меньше цены другого в процентах. Если сравнение по разности вполне однозначно, то есть всегда можно найти, насколько одна величина больше или меньше другой, то для сравнения в процентах нужно указывать, относительно какой величины вычисляется процент.

Такое указание, впрочем, необязательно в том случае, когда говорят, что одна величина больше другой на число процентов, превышающее 100. В этом случае остается только одна возможность вычисления процента, а именно деление разности на меньшее из двух чисел с последующим умножением результата на 100.

Процентный пункт

Вычисление процентных долей от целого – одна из основных математических операций, к тому же часто используемая в повседневной жизни. Правило нахождения процентов от числа гласит о том, что для решения такой задачи его необходимо умножить на указанное в условиях количество %, после чего полученный результат разделить на 100.

Существует обратное правило нахождения числа по его проценту. Для того чтобы получить результат по такой математической операции (второму из трёх базовых типов задач на процентные вычисления) необходимо указанное в условиях число разделить на заданную процентную величину, после чего полученный результат умножить на 100.

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть
Adblock detector