Примеры применения процентов

Способы нахождения процента

Процент можно находить различными способами. Самый популярный способ — разделить число на 100 и умножить полученный результат на искомое количество процентов.

200 руб : 100 = 2 руб.

https://www.youtube.com/watch?v=upload

Когда мы делим число на 100, мы тем самым находим один процент от этого числа. Так, разделив 200 рублей на 100 частей, мы автоматически нашли 1% от двухсот рублей, то есть узнали сколько рублей прихóдится на одну часть. Как видно из примера, на одну часть (на один процент) приходится 2 рубля.

1% от 200 рублей — 2 рубля

Зная сколько рублей приходится на одну часть (на 1%), можно узнать сколько рублей приходится на две части, на три, на четыре, на пять и т.д. То есть можно найти любое количество процентов. Для этого достаточно умножить эти 2 рубля на искомое количество частей (процентов). Давайте найдём шестьдесят частей (60%)

2 руб × 60 = 120 руб.

Найдём 5%

2 руб × 5 = 10 руб.

Найдем 90%

2 руб × 90 = 180 руб.

Найдем 100%

2 руб × 100 = 200 руб.

100% это все сто частей и они составляют все 200 рублей.

https://www.youtube.com/watch?v=ytdevru

Второй способ заключается в том, чтобы представить проценты в виде обыкновенной дроби и найти эту дробь от того числа, откуда требуется найти процент.

Теперь задание можно понимать как «найти  от 200 рублей«. Это нахождение дроби от числа, которое мы изучали ранее. Напомним, что для нахождения дроби от числа, нужно это число разделить на знаменатель дроби и полученный результат умножить на числитель дроби

200 : 100 = 2

2 × 60 = 120

Третий способ заключается в том, чтобы представить процент в виде десятичной дроби и умножить число на эту десятичную дробь.

Например, найдем те же 60% от 200 рублей. Для начала представляем 60% в виде дроби. 60% процентов это шестьдесят частей из ста

200 × 0,60 = 120 руб.

Приведенный способ нахождения процента является наиболее удобным, особенно если человек привык пользоваться калькулятором. Этот способ позволяет найти процент в одно действие.

60% = 0,60 — приписали ноль целых перед числом 60, поскольку число 60 является двузначным

6% = 0,06 — приписали ноль целых и еще один ноль перед числом 6, поскольку число 6 является однозначным.

При делении на 100 мы воспользовались методом передвижения запятой на две цифры влево. В ответе 0,60 ноль, стоящий после цифры 6, сохранился. Но если выполнить это деление уголком, ноль исчезает — получается ответ 0,6

0,60 = 0,6

Выражать проценты в виде десятичной дроби можно не только делением на 100, но и умножением. Значок процента (%) сам по себе заменяет собой множитель 0,01. А если учитывать, что число процентов и значок процента записаны слитно, то между ними располагается «невидимый» знак умножения (×).

Заменим знак процента на множитель 0,01

Задача 1. Бюджет семьи составляет 75 тыс. рублей в месяц. Из них 70% — деньги, заработанные папой. Какую часть заработала мама?

Решение

Всего процентов 100. Если папа заработал 70% денег, то остальные 30% денег заработала мама.

Задача 2. Бюджет семьи составляет 75 тыс. рублей в месяц. Из них 70% — деньги, заработанные папой, а 30% — деньги, заработанные мамой. Сколько денег заработал каждый?

Решение

75 × 0,70 = 52,5 (тыс. руб. заработал папа)

75 × 0,30 = 22,5 (тыс. руб. заработала мама)

Проверка

52,5 22,5 = 75

75 = 75

Ответ: 52,5 тыс. руб. заработал папа, 22,5 руб. заработала мама.

Задача 3. При остывании хлеб теряет до 4% своей массы в результате испарения воды. Сколько килограммов испарится при остывании 12 тонн хлеба.

Решение

1000 × 12 = 12 000 кг

12 000 × 0,04 = 480 кг

Ответ: при остывании 12 тонн хлеба испарится 480 килограмм.

Задача 4. Яблоки при сушке теряют 84% своей массы. Сколько получится сушенных яблок из 300 кг свежих?

Найдем 84% от 300 кг

300 : 100 × 84 = 252 кг

300 кг свежих яблок в результате сушки потеряют 252 кг своей массы. Чтобы ответить на вопрос сколько получится сушенных яблок, нужно из 300 вычесть 252

Примеры применения процентов

300 − 252 = 48 кг

Ответ: из 300 кг свежих яблок получится 48 кг сушенных.

Задача 5. В семенах сои содержится 20% масла. Сколько масла содержится в 700 кг сои?

Решение

Найдем 20% от 700 кг

https://www.youtube.com/watch?v=ytadvertiseru

700 × 0,20 = 140 кг

Ответ: в 700 кг сои содержится 140 кг масла

Задача 6. Гречневая крупа содержит 10% белков, 2,5% жиров и 60% углеводов. Сколько этих продуктов содержится в 14,4 ц гречневой крупы?

Решение

Переведем 14,4 центнера в килограммы. В одном центнере 100 килограмм, в 14,4 центнерах в 14,4 раз больше

100 × 14,4 = 1440 кг

Найдем 10%, 2,5% и 60% от 1440 кг

1440 × 0,10 = 144 (кг белков)

Примеры применения процентов

1440 × 0,025 = 36 (кг жиров)

1440 × 0,60 = 864 (кг углеводов)

Ответ: в 14,4 ц гречневой крупы содержится 144 кг белков, 36 кг жиров, 864 кг углеводов.

Задача 7. Для лесопитомника школьники собрали 60 кг семян дуба, акации, липы и клена. Желуди составляли 60%, семена клена 15%, семена липы 20% всех семян, а остальное составляли семена акации. Сколько килограммов семян акации было собрано школьниками?

Решение

100% − (60% 15% 20%) = 100% − 95% = 5%

60 × 0,05 = 3 кг

Ответ: школьниками было собрано 3 кг семян акации.

60 × 0,60 = 36

60 × 0,15 = 9

60 × 0,20 = 12

60 × 0,05 = 3

36 9 12 3 = 60

60 = 60

Задача 8. Купил человек продукты. Молоко стоит 60 рублей, что составляет 48% от стоимости всех покупок. Определить общую сумму денег, потраченных на продукты.

Решение

Это задача на нахождение числа по его проценту, то есть по его известной части. Такую задачу можно решать двумя способами. Первый заключается в том, чтобы выразить известное число процентов в виде десятичной дроби и найти неизвестное число по этой дроби

Выразим 48% в виде десятичной дроби

48% : 100 = 0,48

60 : 0,48 = 125 рублей

Значит, общая сумма денег, затраченных на продукты составляет 125 рублей.

Второй способ заключается в том, чтобы сначала узнать сколько денег приходится на один процент, затем полученный результат умножить на 100

48% это 60 рублей. Если мы разделим 60 рублей на 48, то узнаем сколько рублей приходится на 1%

60 : 48% = 1,25 рублей

На 1% приходится 1,25 рублей. Всего процентов 100. Если мы умножим 1,25 рублей на 100, получим общую сумму денег, затраченных на продукты

1,25 × 100 = 125 рублей

Задача 9. Из свежих слив выходит 35% сушенных. Сколько надо взять свежих слив, чтобы получить 140 кг сушенных? Сколько получится сушенных слив из 600 кг свежих?

Решение

35% = 0,35

140 : 0,35 = 400 кг

Чтобы получить 140 кг сушенных слив, нужно взять 400 кг свежих.

Ответим на второй вопрос задачи — сколько получится сушенных слив из 600 кг свежих? Если из свежих слив выходит 35% сушенных, то достаточно найти эти 35% от 600 кг свежих слив

600 × 0,35 = 210 кг

Ответ: чтобы получить 140 кг сушенных слив, нужно взять 400 кг свежих. Из 600 кг свежих слив получится 210 кг сушенных.

Задача 10. Усвоение жиров организмом человека составляет 95%. За месяц ученик употребил 1,2 кг жиров. Сколько жиров может быть усвоено его организмом?

Решение

Переведем 1,2 кг в граммы

1,2 × 1000 = 1200 г

Найдем 95% от 1200 г

1200 × 0,95 = 1140 г

Ответ: 1140 г жиров может быть усвоено организмом ученика.

Чтобы выразить что-либо в процентном соотношении, сначала нужно записать дробь, показывающую какую часть первое число составляет от второго, затем выполнить деление в этой дроби и полученный результат выразить в процентах.

Например, пусть имеется пять яблок. При этом два яблока являются красными, три — зелеными. Выразим красные и зеленые яблоки в процентном соотношении.

Имеем две дроби    и   . Выполним деление в этих дробях

0,4 × 100 = 40%

0,6 × 100 = 60%

Значит, 40% составляют красные яблоки, 60% — зеленые.

А все пять яблок составляют 40% 60%, то есть 100%

Задача 2. Двум сыновьям мама дала 200 рублей. Младшему брату мама дала 80 рублей, а старшему 120 рублей. Выразите в процентном соотношении деньги, данные каждому брату.

Решение

Имеем дроби    и  . Выполним деление в этих дробях

0,4 × 100 = 40%

0,6 × 100 = 60%

Выражение чисел в процентах

Замечание.Мы сейчас не находим процент от чего-то, а просто записываем его в виде десятичной дроби.

Но возможен и обратный процесс. Десятичная дробь может быть представлена в виде процента. Для этого нужно умножить эту дробь на 100 и поставить знак процента (%)

Представим десятичную дробь 0,12 в виде процентов

0,12 × 100 = 12%

Это действие называют выражением числа в процентах или выражением чисел в сотых долях.

https://www.youtube.com/watch?v=https:accounts.google.comServiceLogin

Умножение и деление являются обратными операциями. К примеру, если 2 × 5 = 10, то 10 : 5 = 2

Тоже самое происходит, когда мы выражаем десятичную дробь в виде процентов. Так, 12% были выражены в виде десятичной дроби следующим образом: 12 : 100 = 0,12 но потом эти же 12% были «возвращены» с помощью умножения, записав выражение 0,12 × 100 = 12%.

3 × 100 = 300%

Большие проценты вида 300% поначалу могут сбивать с толку, поскольку человек привык считать 100% максимальной долей. Из дополнительных сведений о дробях мы знаем, что один целый объект можно обозначать через единицу. К примеру, если имеется целый не разрезанный торт, то его можно обозначить через 1

Разрежем торт пополам. В этом случае единица обратится в десятичное число 0,5 (поскольку это половина единицы), а 100% обратятся в 50% (поскольку 50 это половина от сотни)

Вернем обратно целый торт, единицу и 100%

Если один торт является единицей, то три торта являются тремя единицами. Каждый торт является целым стопроцентным. Если сложить эти три сотни получится 300%.

Поэтому при переводе целых чисел в проценты, мы умножаем эти числа на 100.

Задача 2. Выразить в процентах число 5

5 × 100 = 500%

https://www.youtube.com/watch?v=ytpolicyandsafetyru

Задача 3. Выразить в процентах число 7

7 × 100 = 700%

Задача 4. Выразить в процентах число 7,5

7,5 × 100 = 750%

Задача 5. Выразить в процентах число 0,5

0,5 × 100 = 50%

Задача 6. Выразить в процентах число 0,9

0,9 × 100 = 90%

Пример 7. Выразить в процентах число 1,5

1,5 × 100 = 150%

Пример 8. Выразить в процентах число 2,8

2,8 × 100 = 280%

Задача 9. Джордж идет со школы домой. Первые пятнадцать минут он прошел 0,75 пути. В остальное время он прошел оставшиеся 0,25 пути. Выразите в процентах части пути, пройденные Джорджом.

Решение

0,75 × 100 = 75%

https://www.youtube.com/watch?v=ytpressru

0,25 × 100 = 25%

Задача 10. Джона угостили половиной яблока. Выразите эту половину в процентах.

Решение

Половина яблока записывается в виде дроби 0,5. Чтобы выразить эту дробь в процентах, умножим её на 100 и к полученному результату добавим знак процента

0,5 × 100 = 50%

Аналоги в виде дробей

Величина, выраженная в процентах, имеет свой аналог в виде обычной дроби. Так, аналогом для 50% является дробь . Пятьдесят процентов также можно назвать словом «половина».

Аналогом для 25% является дробь . Двадцать пять процентов также можно назвать словом «четверть».

Аналогом для 20% является дробь . Двадцать процентов также можно назвать словами «пятая часть».

Аналогом для 40% является дробь .

Аналогом для 60% является дробь

Пример 1. Пять сантиметров это 50% от дециметра или или же просто половина. Во всех случаях речь идет об одной и той же величине — пяти сантиметрах из десяти

Пример 2. Два с половиной сантиметра это 25% от дециметра или или же просто четверть

Пример 3. Два сантиметра это 20% от дециметра или 

Пример 4. Четыре сантиметра это 40% от дециметра или 

Пример 5. Шесть сантиметров это 60% от дециметра или

Уменьшение и увеличение процентов

При увеличении или уменьшении величины, выраженной в процентах употребляется предлог «на».

Примеры:

  • Увеличить на 50% — означает увеличить величину в 1,5 раза;
  • Увеличить на 100% — означает увеличить величину в 2 раза;
  • Увеличить на 200% — означает увеличить в 3 раза;
  • Уменьшить на 50% — означает уменьшить величину в 2 раза;
  • Уменьшить на 80% — означает уменьшить в 5 раз.

Пример 1. Десять сантиметров увеличили на 50%. Сколько сантиметров получилось?

Чтобы решать подобные задачи, нужно исходную величину принимать за 100%. Исходная величина это 10 см. 50% от них составляют 5 см

Изначальные 10 см увеличили на 50% (на 5 см), значит получилось 10 5 см, то есть 15 см

Аналогом же увеличения десяти сантиметров на 50% является множитель 1,5. Если умножить на него 10 см получится 15 см

10 × 1,5 = 15 см

Поэтому выражения «увеличить на 50%» и «увеличить в 1,5 раза» говорят об одном и том же.

Пример 2. Пять сантиметров увеличили на 100%. Сколько сантиметров получилось?

Примем исходные пять сантиметров за 100%. Сто процентов от этих пяти сантиметров будут сами 5 см. Если увеличить 5 см на эти же 5 см, то получится 10 см

Аналогом же увеличения пяти сантиметров на 100% является множитель 2. Если умножить на него 5 см получится 10 см

5 × 2 = 10 см

Поэтому выражения «увеличить на 100%» и «увеличить в 2 раза» говорят об одном и том же.

Пример 3. Пять сантиметров увеличили на 200%. Сколько сантиметров получилось?

Примем исходные пять сантиметров за 100%. Двести процентов это два раза по сто процентов. То есть 200% от 5 см будут составлять 10 см (по 5 см на каждые 100%). Если увеличить 5 см на эти 10 см, то получится 15 см

https://www.youtube.com/watch?v=ytaboutru

Аналогом же увеличения пяти сантиметров на 200% является множитель 3. Если умножить на него 5 см получится 15 см

5 × 3 = 15 см

Поэтому выражения «увеличить на 200%» и «увеличить в 3 раза» говорят об одном и том же.

Пример 4. Десять сантиметров уменьшили на 50%. Сколько сантиметров осталось?

Примем исходные 10 см за 100%. Пятьдесят процентов от 10 см составляют 5 см. Если уменьшить 10 см на эти 5 см, останется 5 см

Аналогом же уменьшения десяти сантиметров на 50% является делитель 2. Если разделить на него 10 см, то получится 5 см

10 : 2 = 5 см

Поэтому выражения «уменьшить на 50%» и «уменьшить в 2 раза» говорят об одном и том же.

Пример 5. Десять сантиметров уменьшили на 80%. Сколько сантиметров осталось?

Примем исходные 10 см за 100%. Восемьдесят процентов от 10 см составляют 8 см. Если уменьшить 10 см на эти 8 см, останется 2 см

Аналогом же уменьшения десяти сантиметров на 80% является делитель 5. Если разделить на него 10 см, то получится 2 см

10 : 5 = 2 см

Поэтому выражения «уменьшить на 80%» и «уменьшить в 5 раз» говорят об одном и том же.

При решении задач на уменьшение и увеличение процентов, можно умножать/делить величину на указанный в задаче множитель.

Задача 1. Насколько процентов изменилась величина, если она увеличилась в 1,5 раза?

Величину о которой говорится в задаче можно обозначить как 100%. Далее умножить эти 100% на множитель 1,5

100% × 1,5 = 150%

https://www.youtube.com/watch?v=ytcopyrightru

150% − 100% = 50%

Задача 2. Насколько процентов изменилась величина, если она уменьшилась в 4 раза?

В этот раз будет происходить уменьшение величины, поэтому будем выполнять деление. Величину о которой говорится в задаче обозначим как 100%. Далее разделим эти 100% на делитель 4

100% : 4 = 25%

100% − 25% = 75%

Значит, при уменьшении величины в 4 раза она уменьшилась на 75%.

Задача 3. Насколько процентов изменилась величина, если она уменьшилась в 5 раз?

Величину о которой говорится в задаче обозначим как 100%. Далее разделим эти 100% на делитель 5

100% : 5 = 20%

100% − 20% = 80%

Значит, при уменьшении величины в 5 раз она уменьшилась на 80%.

Задача 4. Насколько процентов изменилась величина, если она уменьшилась в 10 раз?

Величину о которой говорится в задаче обозначим как 100%. Далее разделим эти 100% на делитель 10

100% : 10 = 10%

100% − 10% = 90%

Значит, при уменьшении величины в 10 раз она уменьшилась на 90%.

Сравнение величин в процентах

Мы уже много раз сравнивали величины различными способами. Первым нашим инструментом была разность. Так, к примеру чтобы сравнить 5 рублей и 3 рубля, мы записывали разность 5−3. Получив ответ 2, можно было сказать, что «пять рублей больше трех рублей на два рубля».

Получаемый в результате вычитания ответ в повседневной жизни называют не «разностью», а «разницей».

Так, разница между пятью и тремя рубля составляет два рубля.

Следующим инструментом, которым мы воспользовались для сравнения величин, было отношение. Отношение позволяло нам узнать во сколько раз первое число больше второго (или сколько раз первое число содержит второе).

Так, к примеру десять яблок больше двух яблок в пять раз. Или по другому, десять яблок содержит два яблока пять раз. Данное сравнение можно записать с помощью отношения

Но величины можно сравнить и в процентах. Например, цену двух товаров сравнивать не в рублях, а оценивать, насколько цена одного товара больше или меньше цены другого в процентах.

Для сравнения величин в процентах, одну из них нужно обозначить как 100%, а вторую исходя из условий задачи.

Например, узнаем на сколько процентов десять яблок больше, чем восемь яблок.

Теперь наша задача сравнить на сколько процентов 10 яблок больше, чем эти 8 яблок. 10 яблок это 8 2 яблока. Значит, добавив к восьми яблокам ещё два яблока, мы увеличим 100% еще на какое-то число процентов. Чтобы узнать на какое именно, определим сколько процентов от восьми яблок составляют два яблока

Добавив эти 25% к восьми яблокам, мы получим 10 яблок. А 10 яблок это 8 2, то есть 100% и еще 25%. Итого получаем 125%

Значит, десять яблок больше восьми яблок на 25%.

Теперь решим обратную задачу. Узнаем насколько процентов восемь яблок меньше, чем десять яблок. Сразу напрашивается ответ, что восемь яблок меньше на 25%. Однако это не так.

Восемь яблок это 10−2, то есть уменьшив 10 яблок на 2 яблока, мы уменьшим их на какое-то число процентов. Чтобы узнать на какое именно, определим сколько процентов от десяти яблок составляют два яблока

Отняв эти 20% от десяти яблок, мы получим 8 яблок. А 8 яблок это 10−2, то есть 100% и минус 20%. Итого получаем 80%

Значит, восемь яблок меньше десяти яблок на 20%.

Задача 2. На сколько процентов 5000 рублей больше, чем 4000 рублей?

Решение

0,25 × 100 = 25%

1000 рублей от 4000 рублей составляют 25%. Если прибавить эти 25% к 4000, то получится 5000 рублей. Значит, 5000 рублей на 25% больше, чем 4000 рублей

Задача 3. На сколько процентов 4000 рублей меньше, чем 5000 рублей?

В этот раз сравниваем 4000 с 5000. Примем 5000 за 100%. Пять тысяч больше четырех тысяч на одну тысячу рублей. Узнаем какую часть одна тысяча составляет от пяти тысяч

Тысяча от пяти тысяч составляет 20%. Если вычесть эти 20% от 5000 рублей, то получим 4000 рублей.

Значит, 4000 рублей меньше 5000 рублей на 20%

Задачи на концентрацию, сплавы и смеси

Допустим, возникло желание приготовить какой-нибудь сок. У нас в распоряжении имеется вода и малиновый сироп

Добавим 50 мл малинового сиропа и размешаем полученную жидкость. В результате у нас получится 250 мл малинового сока (200 мл воды   50 мл сиропа = 250 мл сока)

Какую часть от получившегося сока составляет малиновый сироп?

Малиновый сироп составляет сока. Вычислим это отношение, получим число 0,20. Это число показывает количество растворённого сиропа в получившемся соке. Назовём это число концентрацией сиропа.

Концентрацией растворённого вещества называют отношение количества растворённого вещества или его массы к объему раствора.

0,20 × 100 = 20%

Таким образом, концентрация сиропа в малиновом соке составляет 20%.

Вещества в растворе могут быть неоднородными. Например, смешаем 3 л воды и 200 г соли.

Масса 1 л воды составляет 1 кг. Тогда масса 3 л воды будет составлять 3 кг. Переведем 3 кг в граммы, получим 3 кг = 3000 г.

Теперь в 3000 г воды опустим 200 г соли и смешаем полученную жидкость. В результате получится соленный раствор, общая масса которого будет составлять 3000 200, то есть 3200 г. Найдем концентрацию соли в полученном растворе. Для этого найдём отношение массы растворенной соли к массе раствора

Значит, при смешивании 3 л воды и 200 г соли получится 6,25%-й раствор соли.

Аналогично может быть определено количество вещества в сплаве или в смеси. Например, сплав содержит олово массой 210 г, и серебро массой 90 г. Тогда масса сплава будет составлять 210 90, то есть 300 г. Олова в сплаве будет содержаться , а серебра . В процентном соотношении олова будет 70%, а серебра 30%

При смешивании двух растворов получается новый раствор, состоящий из первого и второго растворов. У нового раствора концентрация вещества может быть другой. Полезным навыком является умение решать задачи на концентрацию, сплавы и смеси. В общем итоге смысл таких задач заключается в отслеживании изменений, которые происходят при смешивании растворов различной концентрации.

Смешаем два малиновых сока. Первый сок объемом 250 мл содержит 12,8% малинового сиропа. А второй сок объемом 300 мл содержит 15% малинового сиропа. Сольем эти два сока в большой стакан и смешаем. В результате получим новый сок объемом 550 мл.

Теперь определим концентрацию сиропа в полученном соке. Первый слитый сок объемом 250 мл содержал 12,8% сиропа. А 12,8% от 250 мл это 32 мл. Значит, первый сок содержал 32 мл сиропа.

Второй слитый сок объемом 300 мл содержал 15% сиропа. А 15% от 300 мл это 45 мл. Значит, второй сок содержал 45 мл сиропа.

32 мл 45 мл = 77 мл

Значит, при смешивании 12,8%-го малинового сока объемом 250 мл и 15%‍-го малинового сока объемом 300 мл, получается 14%-й малиновый сок объемом 550 мл.

Задача 1. Имеются 3 раствора морской соли в воде: первый раствор содержит 10% соли, второй содержит 15% соли и третий — 20% соли. Смешали 130 мл первого раствора, 200 мл второго раствора и 170 мл третьего раствора. Определите сколько процентов составляет морская соль в полученном растворе.

Решение

130 мл 200 мл 170 мл = 500 мл

Поскольку в первом растворе было 130 × 0,10 = 13 мл морской соли, во втором растворе 200 × 0,15 = 30 мл морской соли, а в третьем — 170 × 0,20 = 34 мл морской соли, то в полученном растворе будет содержаться 13   30   34 = 77 мл морской соли.

Определим концентрацию морской соли в полученном растворе. Для этого найдём отношение 77 мл морской соли к объему раствора 500 мл

Значит, в полученном растворе содержится 15,4% морской соли.

Задача 2. Сколько граммов воды надо добавить к 50 г раствора, содержащего 8% соли, чтобы получить 5%-й раствор?

Решение

Заметим, что если к имеющемуся раствору добавить воды, то количество соли в нём не изменится. Изменится только её процентное содержание, поскольку добавление воды в раствор приведёт к изменению его массы.

Нам нужно добавить такое количество воды при котором восемь процентов соли стали бы пятью процентами.

Определим сколько граммов соли содержится в 50 г раствора. Для этого найдем 8% от 50

50 г × 0,08 = 4 г

8% от 50 г составляют 4 г. Другими словами, на восемь частей из ста приходятся 4 грамма соли. Давайте сделаем так, чтобы эти 4 грамма приходились не на восемь частей, а на пять частей, то есть на 5%

4 грамма — 5%

4 г : 5 = 0,8 г0,8 г × 100 = 80 г

80 граммов раствора это масса при которой 4 грамма соли будут приходиться на 5% раствора. А для получения этих 80 граммов, нужно к изначальным 50 граммам добавить 30 граммов воды.

Значит, для получения 5%-го раствора соли, нужно к имеющемуся раствору добавить 30 г воды.

Задача 2. Виноград содержит 91% влаги, а изюм – 7%. Сколько килограммов винограда требуется для получения 21 килограмма изюма?

Решение

Заметим, что в процессе превращения винограда в изюм, исчезает только влага этого винограда. Чистое вещество остаётся без изменения. После того, как виноград превратится в изюм, в получившемся изюме будет 7% влаги и 93% чистого вещества.

Определим сколько чистого вещества содержится в 21 кг изюма. Для этого найдем 93% от 21 кг

21 кг × 0,93 = 19,53 кг

19,53 кг : 9 = 2,17 кг 2,17 кг × 100 = 217 кг

Значит, для получения 21 кг изюма нужно взять 217 кг винограда.

Задача 3. В сплаве олова и меди медь составляет 85%. Сколько надо взять сплава, чтобы в нём содержалось 4,5 кг олова?

Решение

Спрашивается сколько надо взять сплава, чтобы в нем содержалось 4,5 олова. Поскольку олова в сплаве содержится 15%, то 4,5 кг олова и будут приходиться на эти 15%.

4,5 кг : 15 = 0,3 кг 0,3 кг × 100 = 30 кг

Значит, сплава нужно взять 30 кг, чтобы в нём содержалось 4,5 кг олова.

Задача 4. Смешали некоторое количество 12%-го раствора соляной кислоты с таким же количеством 20%-го раствора этой же кислоты. Найти концентрацию получившейся соляной кислоты.

Решение

Изобразим на рисунке первый раствор в виде прямой линии и выделим на нём 12%

Поскольку количество растворов одинаково, рядом можно изобразить такой же рисунок, иллюстрирующий второй раствор с содержанием соляной кислоты 20%

У нас получилось двести частей раствора (100%   100%), тридцать две части из которых составляют соляную кислоту (12%   20%)

Определим какую часть 32 части составляют от 200 частей

Значит, при смешивании 12%-го раствора соляной кислоты с таким же количеством 20%-го раствора этой же кислоты получится 16%-й раствор соляной кислоты.

Для проверки представим, что масса первого раствора была 2 кг. Масса второго раствора так же будет составлять 2 кг. Тогда при смешивании этих растворов получится 4 кг раствора. В первом растворе соляной кислоты было 2 × 0,12 = 0,24 кг, а во втором — 2 × 0,20 = 0,40 кг. Тогда в новом растворе соляной кислоты будет 0,24   0,40 = 0,64 кг. Концентрация соляной кислоты составит 16%

Задачи для самостоятельного решения

Задание 1. Выразите в виде обыкновенной дроби следующие части:

Задание 2. Выразите в виде обыкновенной дроби следующие части:

Задание 3. Выразите в виде десятичной дроби следующие части:

Задание 4. Изобразите графически следующие части:

Задание 5. Опишите следующий рисунок в виде процентов:

175%

Задание 6. Опишите следующий рисунок в виде процентов:

250%

Задание 7. Опишите следующий рисунок в виде процентов:

275%

Задание 8. Опишите следующий рисунок в виде процентов:

225%

Задание 9. Опишите следующий рисунок в виде процентов:

350%

Задача 10. Число 50 увеличили на 20%. Найти новое значение числа.

Решение

Найдем 20% от 50

50 × 0,20 = 10

Прибавим полученное число 10 к числу 50, получим новое значение 60

50 10 = 60

Ответ: новое значение равно 60.

Задача 11.

Число

увеличили на 60%. Найти новое значение числа.

Решение

Найдем 60% от и прибавим их к . Так мы определим новое значение числа.

Для удобства нахождения шестидесяти процентов от , заменим 60% на его аналог в виде обыкновенной дроби. Умножив на , мы найдем 60% от числа

Теперь увеличим число на найденные 60%, т.е. на число

Ответ: новое значение равно

Задача 12. Ответьте на следующие вопросы:

1) Потратили 80 % суммы. Сколько процентов этой суммы осталось?
2) Мужчины составляют 75 % всех работников завода. Сколько процентов работников завода составляют женщины?
3) Девочки составляют 40 % класса. Сколько процентов класса составляют мальчики?

Задача 13. Ответьте на следующие вопросы:

1) В магазин привезли 2500 кг помидоров. В первый день продали 30% всех помидоров. Сколько килограммов помидоров осталось продать?
2) В школе 400 учащихся, 52 % этого числа составляют девочки. Сколько мальчиков в школе?

Задача 14. Число увеличили на 25%. На сколько процентов надо уменьшить новое число, чтобы получилось исходное?

Решение

Воспользуемся переменной. Пусть A это исходное число о котором говорится в задаче. Примем это исходное число А за 100%

Увеличим это исходное число A на 25%

Теперь новое число составляет 125%. Узнаем какую часть от 125% составляет 25%. Для этого найдем отношение 25% к 125%

Выразим полученный результат в процентах:

0,2 × 100 = 20%

Ответ: чтобы получить исходное число, новое число надо уменьшить на 20%.

Задача 15. Число уменьшили на 50%. На сколько надо увеличить новое число, чтобы получилось исходное?

Решение

Воспользуемся переменной. Пусть P это исходное число о котором говорится в задаче. Примем это исходное число P за 100%

Уменьшим это исходное число P на 50%

Теперь новое число составляет 50% от исходного числа. Узнаем во сколько раз исходное число P больше нового числа. Для этого найдем отношение 100% к 50%

Исходное число в два раза больше нового. Это видно даже по рисунку. А чтобы сделать новое число равным исходному, его нужно увеличить в два раза. А увеличить число в два раза означает увеличить его на 100%.

Значит, новое число, которое составляет половину от исходного числа, нужно увеличить на 100%.

Рассматривая новое число, его также принимают за 100%. Так, на приведенном рисунке новое число является половиной от исходного числа и подписано как 50%. По отношению к исходному числу новое число является половиной. Но если рассматривать его отдельно от исходного, его нужно принимать за 100%.

Поэтому на рисунке, новое число которое изображается линией, сначала было обозначено как 50%. Но затем это число мы обозначили как 100%.

Ответ: чтобы получить исходное число, новое число надо увеличить на 100%.

Задача 16. В прошлом месяце в городе произошло 15 ДТП.
В этом месяце этот показатель снизился до 6. На сколько процентов снизилось количество ДТП?

Решение

В прошлом месяце было 15 ДТП. В этом месяце 6. Значит, количество ДТП снизилось на 9.
Примем 15 ДТП за 100%. Снизив 15 ДТП на 9, мы снизим их на какое-то число процентов. Чтобы узнать на какое именно, узнаем какую часть 9 ДТП составляет от 15 ДТП

9 ДТП от 15 составляет 60%. Значит, количество ДТП снизилось на 60%.

Ответ: количество ДТП снизилось на 60%.

Задача 17. Смешали 8 кг 18%-го раствора некоторого вещества с 12 кг 8%-го раствора этого же вещества. Найдите концентрацию получившегося раствора.

Решение

Сложим массы исходных растворов:

8 кг 12 кг = 20 кг

В первом растворе было 8 × 0,18 = 1,44 кг вещества, а во втором растворе 12 × 0,08 = 0,96 кг этого же вещества. Тогда в получившемся растворе будет 1,44   0,96 = 2,40 кг.

Определим концентрацию вещества в получившемся растворе:

Ответ: концентрация получившегося раствора составляет 12%.

Задача 18. Смешали некоторое количество 11%-го раствора некоторого вещества с таким же количеством 19% раствора этого же вещества. Найдите концентрацию получившегося раствора.

Решение

Масса обоих растворов одинакова. Каждый раствор можно принять за 100%. После сложения растворов получится 200% раствора. В первом растворе было 11% вещества, а во втором 19% вещества. Тогда в получившемся 200%-м растворе будет 11%   19% = 30% вещества.

Определим концентрацию получившегося растворе. Для этого узнаем какую часть тридцать частей вещества составляют от двухсот частей вещества:

Ответ: концентрация получившегося раствора составляет 15%.

Задача 19. За последние 3 месяца цены на продукты питания росли в среднем на 10% за каждый месяц. На сколько процентов выросли цены за 3 месяца?

Решение

Примем первоначальную цену на продукты питания за 100%. Для удобства решения задачи, проценты будем выражать в десятичных дробях. Тогда 100% в виде десятичной дроби будут записаны как 1.

За первый месяц цена повысилась на 10%. Прибавим к имеющейся цене 1 десять процентов от этой цены, получим 1   0,10 × 1. Эта сумма равна выражению 1,10. Значит, цена за первый месяц станет 1,10.

За второй месяц цена также повысилась на 10%. Прибавим к нынешней цене 1,10 десять процентов от этой цены, получим 1,10   0,10 × 1,10. Эта сумма равна выражению 1,21Значит, цена за второй месяц станет 1,21.

За третий месяц цена также повысилась на 10%. Прибавим к нынешней цене 1,21 десять процентов от этой цены, получим 1,21   0,10 × 1,21. Эта сумма равна выражению 1,331Тогда цена за третий месяц станет 1,331.

Вычислим разницу между новой и старой ценой. Если изначальная цена была равна 1, то повысилась она на 1,331 − 1 = 0,331. Выразим этот результат в процентах, получим 0,331 × 100 = 33,1%

Ответ: за 3 месяца цены на продукты питания повысились на 33,1%.

https://www.youtube.com/watch?v=ytcreatorsru

Понравился урок? Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть
Adblock detector